| 1. | With the minimization of the objective function , an optimization output feedback gain f is sought 在使该性能指标达到最小的情况下得到最优输出反馈控制律。 |
| 2. | Lyapunov equation based algorithm for calculating state feedback gain is a comparatively normal algorithm used in pole assignment 摘要基于李亚普诺夫方程的状态反馈增益算法是极点配置算法中比较常见的一种。 |
| 3. | In this thesis , we have the rectangular composite plate with piezoelectric sensors and actuators as ours study object . methods of riz and fem are used to analyze the problem of the vibration control of the smart structures with the direct feedback gain 本文以压电薄板为研究对象,采用解析法(里兹法)和数值分析法(有限单元法)研究了压电智能结构的振动控制问题,其中采用的反馈控制策略为直接反馈。 |
| 4. | The optimization of upper bound can be cast as a bilinear matrix inequality ( bmi ) problem in which the feedback gain is a set of optimization parameters , and a mixed algorithm that combines genetic algorithm and interior - point method is designed for the bmi problem 其中性能上界的优化是以反馈增益为寻优参数的一组双线性矩阵不等式( bmi )问题,对此将遗传算法和内点法结合,设计了一种混合算法进行求解。 |
| 5. | A new algorithm for computing the state variable feedback gain is put forward in this paper . the proposed algorithm is developed in th econtext of the generalized state feedback controller design method . an example about an autosearching equilibrium system to illustrated the application of the proposed algorithm is also given 提出了一种状态可变反馈增益的新算法,这种算法改进了一般状态反馈控制器的设计方法,并给出了一个自搜索平衡系统的例子说明新算法的应用 |
| 6. | The stochastic structure and stochastic intelligent truss structure are taken as research object in this paper . the analytical model and method of the structural dynamic characteristic are investigated . when the applied forces are random excitation or random process ( stationary random process or non - stationary random process ) excitation , the structural dynamic response , the active vibration control for the intelligent structure , the optimal placement of the sensor and the actuator and the optimization of the feedback gains of the closed loop control system for the intelligent structure , and the effects of the structural parameters on the active vibration control et al are all studied systemically 本文以随机结构和随机智能桁架结构为对象,对结构动力特性分析模型与求解方法进行了研究;对结构在随机力或随机过程(平稳随机过程或非平稳随机过程)激励下,结构的动力响应、结构的振动主动控制、智能结构中作动和传感元件配置位置与闭环控制系统增益优化、结构参数对振动主动控制效果的影响等问题开展了全面而系统的研究。 |
| 7. | Abstract : this paper considers the decentralized stabilization problem via local state feedback control laws for a class of large - scale linear discrete - time systems with delay interconnections . a sufficient condition for decentralized stabilizability is derived and is expressed as a system of linear matrix inequalities . furthermore , the problem of designing a decentralized state feedback control law with smaller feedback gain parameters is formulated as a convex optimization problem , and latter can be solved by using existing efficient convex optimization techniques . the obtained controller enables the closed - loop systems to be not only stable , but also of any prescribed stability degree 文摘:用一组线性矩阵不等式给出一类线性离散时滞大系统分散能镇定的一个充分条件,进而,通过建立和求解一个凸优化问题,提出了具有较小反馈增益参数的分散稳定化状态反馈控制律的设计方法.所得到的控制器不仅使得闭环系统是稳定的,而且还可以使得闭环系统状态具有给定的衰减度 |
| 8. | In the full of research , the thesis constructed the dynamic equations of the simplified model , then programmed and computed the feedback gains using lqr method . moreover , the thesis plotted pictures of displacement , velocity , acceleration , bend and shearing force of ship ' s head and middle part in the condition of using cable and not using cable 在研究工作中,首先对船舶的简化模型建立了动力学方程,然后采用线性二次型最优控制方法,编写程序并计算出船体垂向振动固有频率和最优反馈矩阵,得到控制前后船艏以及船舯部的位移、速度、加速度、弯矩和剪力历程图。 |
| 9. | An explicit expression to compute the h norm of the discrete - time symmetric system is established using the bounded real lemma . one explicit solution of stabilizing output feedback gains is obtained for the output feedback stabilization problem . ah explicit expression for h norm and the sub - optimal output feedback controllers have been obtained for the h control problem 证明边界实引理在离散对称系统时有单位矩阵解,利用这一性质给出一个计算h ~范数的格11浙江大学博士学位论文式,并给出对称输出反馈可稳定问题的一个明显解和h ”控制次优输出反馈控制器。 |